Von Hippel-Lindau mutations disrupt vascular patterning and maturation via Notch.
نویسندگان
چکیده
Von Hippel-Lindau (VHL) gene mutations induce neural tissue hemangioblastomas, as well as highly vascularized clear cell renal cell carcinomas (ccRCCs). Pathological vessel remodeling arises from misregulation of HIFs and VEGF, among other genes. Variation in disease penetrance has long been recognized in relation to genotype. We show Vhl mutations also disrupt Notch signaling, causing mutation-specific vascular abnormalities, e.g., type 1 (null) vs. type 2B (murine G518A representing human R167Q). In conditional mutation retina vasculature, Vhl-null mutation (i.e., UBCCreER/+Vhlfl/fl) had little effect on initial vessel branching, but it severely reduced arterial and venous branching at later stages. Interestingly, this mutation accelerated arterial maturation, as observed in retina vessel morphology and aberrant α-smooth muscle actin localization, particularly in vascular pericytes. RNA sequencing analysis identified gene expression changes within several key pathways, including Notch and smooth muscle cell contractility. Notch inhibition failed to reverse later-stage branching defects but rescued the accelerated arterialization. Retinal vessels harboring the type 2B Vhl mutation (i.e., UBCCreER/+Vhlfl/2B) displayed stage-specific changes in vessel branching and an advanced progression toward an arterial phenotype. Disrupting Notch signaling in type 2B mutants increased both artery and vein branching and restored arterial maturation toward nonmutant levels. By revealing differential effects of the null and type 2B Vhl mutations on vessel branching and maturation, these data may provide insight into the variability of VHL-associated vascular changes - particularly the heterogeneity and aggressiveness in ccRCC vessel growth - and also suggest Notch pathway targets for treating VHL syndrome.
منابع مشابه
Unusual diagnosis of Von Hippel Lindau syndrome on PET/CT - Case report and brief review of literature
We report an unusual case of a young male with cerebellar hemangioblastoma treated previously for medullary carcinoma of thyroid, whose PET/CT scans revealed a constellation of findings that suggested the rare Von Hippel Lindau syndrome. The diagnosis was clinched by confirming the findings on whole body contrast enhanced computed tomography (CECT) and contrast enha...
متن کاملvon Hippel-Lindau syndrome: target for anti-vascular endothelial growth factor (VEGF) receptor therapy.
von Hippel-Lindau (VHL) syndrome is a familial cancer syndrome caused by germline mutations in the VHL tumor suppressor gene. Mutations in the VHL gene result in the constitutive stabilization of transcription factors hypoxia-inducible factors 1alpha and 2alpha, which bind to specific enhancer elements in the vascular endothelial growth factor (VEGF) gene and stimulate angiogenesis. This increa...
متن کاملIndependent segregation of von Hippel-Lindau disease and cerebral cavernomas.
A probable diagnosis of von Hippel-Lindau disease was made in a two generation family in which the proband had a phaeochromocytoma, renal cysts, and multiple cerebral cavernomas. His sister had multiple similar cerebral vascular lesions and his father died from renal carcinoma aged 42. Although the family did not satisfy the conventional diagnostic criteria for von Hippel-Lindau disease, an und...
متن کاملThe impact of molecular genetic analysis of the VHL gene in patients with haemangioblastomas of the central nervous system.
OBJECTIVES Haemangioblastoma of the CNS occurs as a sporadic entity and as a manifestation of the autosomal dominant von Hippel-Lindau disease with the major additional components retinal angioma, renal cancer, and pheochromocytoma. Genetic testing for germline mutations predisposing to von Hippel-Lindau disease has been available since identification of the VHL tumour suppressor gene. The impa...
متن کاملUbiquitination of a novel deubiquitinating enzyme requires direct binding to von Hippel-Lindau tumor suppressor protein.
von Hippel-Lindau (VHL) disease is a hereditary cancer syndrome caused by germline mutations of the VHL gene. Recent studies suggest that VHL protein (pVHL) is a component of an E3 ubiquitin ligase, but the detailed biological function of pVHL remains to be determined. To further elucidate the biological functions of pVHL, we searched pVHL-interacting proteins using yeast two-hybrid screening. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JCI insight
دوره 3 4 شماره
صفحات -
تاریخ انتشار 2018